Genetic analysis of glutamate transport and glutamate decarboxylase in Escherichia coli.

نویسندگان

  • M Marcus
  • Y S Halpern
چکیده

The location of the Escherichia coli K-12 genes determining or regulating glutamate transport, and the location of the gene determining glutamate decarboxylase synthesis, were established by conjugation. The ability to grow on glutamate as the sole source of carbon and energy was used to select for glutamate transport recombinants. Two genes determining the ability to grow on glutamate as the sole source of carbon and energy were mapped. One (gltC) is located near mtl (mannitol), and the other (gltH) appears to be located between the gal (galactose) and trp (tryptophan) loci. The glutamate decarboxylase gene (gad) is strongly linked to gltC. The gltC(+) recombinants grow on glutamate much faster and accumulate this amino acid to a greater extent than do the gltH(+) recombinants. The gltH(+) gene functioned only in one female strain (P678), whereas the gltC gene functioned in all the female strains tested (P678, C600, W1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and physiological analysis of glutamate decarboxylase in Escherichia coli K-12.

No correlation was found between glutamate decarboxylase (GAD) activity and the ability of Escherichia coli K-12 strains to grow on glutamate. A gene, gad, determining GAD activity maps near gltC, which controls glutamate permease.

متن کامل

Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei

Gamma-amino butyric acid (GABA) possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad) gene of a loca...

متن کامل

Partial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain

Background: Gamma -aminobutyric acid (GABA), a non-protein amino acid acts as an inhibitory neurotransmitter in the central nervous system of mammalians. The glutamate decarboxylase (GAD) is responsible for the conversion of L-glutamate to GABA. The human brain has two isoforms of this enzyme, GAD65 and GAD67 that differ in molecular weight, amino acid sequence, antigenicity, cellular location ...

متن کامل

GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli.

In several Gram-positive and Gram-negative bacteria glutamate decarboxylases play an important role in the maintenance of cellular homeostasis in acid environments. Here, new insight is brought to the regulation of the acid response in Escherichia coli. Overexpression of yhiE, similarly to overexpression of gadX, a known regulator of glutamate decarboxylase expression, leads to increased resist...

متن کامل

Enchancement of Gamma-Aminobutyric Acid Production by Co-Localization of Neurospora crassa OR74A Glutamate Decarboxylase with Escherichia coli GABA Transporter Via Synthetic Scaffold Complex.

Gamma-aminobutyric acid is a precursor of nylon-4, which is a promising heat-resistant biopolymer. GABA can be produced from the decarboxylation of glutamate by glutamate decarboxylase. In this study, a synthetic scaffold complex strategy was employed involving the Neurospora crassa glutamate decarboxylase (GadB) and Escherichia coli GABA antiporter (GadC) to improve GABA production. To constru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 93 4  شماره 

صفحات  -

تاریخ انتشار 1967